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Nature of the transition from two- to three-dimensional ordering
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We report the results of extensive molecular dynamics simulations of solid-to-solid transitions in two- to
six-layer colloidal suspensions confined between two smooth parallel walls. The studies are designed to
elucidate the ordered particle packings that interpolate between the structures of two- and three-dimensional
crystals in a confined space. At a fixed density per layer, as the wall separation increases we find a sequence
of stable phases, each characterized by uniform amplitude buckling along the normal to the layer planes. The
buckling is coupled to an in-plane ordering transition. The buckled phases alternate with phases whose struc-
tures contain only parallel planes of particles. The relative densities of the positively and negatively displaced
particles in a buckled layer, the in-plane structures, and the behavior with respect to increasing wall separation
of the split density distribution that characterizes a buckled layer, clearly identify these layers as intermediates
in the reconstructive transformationg\ — (n+ 1) that occur when the character of the constrained space
evolves from being two dimensional to being three dimensiéfabenotes layers with hexagonal packing
symmetry, whileJ denotes layers with square packing symmetijhe two transitionspnA—n-buckled
—(n+1)d, are found to be first order.

PACS numbe(s): 64.70.Dv

[. INTRODUCTION the fcc structure. As noted in Rdf3], there are several rea-
sons for not accepting this interpretation, and it is one of the

Since the first observations of ordering in colloidal sus-goals of our work to show that the transitions depicted in Eq.
pensions, by Perrin in 19049], considerable effort has been (1.1) are not aptly described as associated with slices of a
devoted to characterizing the evolution of three-dimensionalhree-dimensional fcc crystal.
ordering from two-dimensional ordering. In 1983 Pansu, The structural sequence displayed in Etfl), which in-
Pieranski and StrzeleckR] reported the results of experi- cludes only hexagonal and square symmetries, implies that
mental studies of a suspension of charged colloidal particlecreasing the wall separation leads only to integral numbers
confined in a wedge shaped cell. They showed that as thef layers in the available space. When the number of layers is
distance between the confining walls increases the sequensmall there will then be large fluctuations in density and

of stable crystal structures is pressure. Hence, when the available gap is greater than that
needed for the/A structure but smaller than that needed for
IAN—-20—-2A—30—-3A—"--. (1.)  the (n+1)0 structure, instability with respect to other struc-

tures can occur. Consider, for example, a one-layer system.

In Eqg. (1.1), the symbolA denotes crystal slabs with hex- In this system the in-plane packing structure is hexagonal,
agonal(triangulay symmetry, while the symbdD) denotes and the density distribution along the normal to the plane
crystal slabs with square symmetry. This structural route beéwhich we call the longitudinal density distributipoan have
tween two- and three-dimensional solids involves two typesone peak, corresponding to one layer with thermal motion
of reconstructive transformations: first aa{1)A —n[] normal to the layer, or it can have two peaks, corresponding
conversion, and secondrdal—nA conversion. A qualita- to one layer adjacent to each wall. Each of these layers also
tive understanding of the basis for these conversions can tsupports thermal motion normal to the plane. The buckling
obtained from a study of hard sphere packing betweemf a plane of particles is coupled to an in-plane order-
smooth plates. In this case the equilibrium state, in the limidisorder transition. Specifically, the lateral positions of par-
of high pressure, corresponds to maximum volume densityicles that are localized at the same height are ordered. This
[3]. It is found that as the gap between the plates increasesrdering can take the form of linear or zigzag single rows of
crystal slabs with triangular packing and square packing arparticles, and a well ordered phase appears when there are
alternately most stable. We note that this study does natonoverlapping split peaks in the longitudinal density distri-
prove that the structures identified in Ed.1) have the high- bution. Such transitions have been observed in single-layer
est density for an arbitrarily chosen slab thickness, since onlgolloidal suspensions in experimeffits-7] and in computer
the structures cited were examined. simulation studie$9,14]. These results also follow from an

Another view of the sequence of transitions displayed inanalysis based on the Landau theory of phase transitions, in
Eqg. (1.1) is based on the observation that the one-layer hexwhich the thermodynamic potential is expanded about that
agonal and one-layer square symmetries can be related to tfer the flat state[8], and from an analysis based on free-
(111) and(100 planes in a face centered culgfcc) crystal,  volume theory[9]. It is found that the stability region of the
respectively. Then the sequence in Ef.1) can be viewed buckled phase increases with the gap between the confining
as the result of slicing layers with different orientations of walls until the buckled phase becomes unstable with respect
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TABLE I. The values ofD [in Eq. (2.2)] and the wall separation

5.00
H.
4.00 |
D H/o
3.00 | 1x10°1 1.80
. 5x10% 1.90
i 2.00 2% 1038 2.00
- 100 | 1x10% 2.10
1x10% 2.20
0.00 1x10 2.30
1x10% 2.35
100 1x10%° 2.40
; : 1x10° 2.82
1.10 1.15

= 1ls 1x10° 2.90
, ) 1x10° 3.02
FIG. 1. Marcus-Rice-type potential. 1x10°5 3.20
5x1077 3.25
to the formation of a crystal with an additional layer. The 1x10°8 3.30
formation of a buckled phase reduces the density fluctuations 1%x10°Y7 3.74
when the distance between the confining walls is increased. 1y 1g-20 3.90
An examination of the symmetry of the emerging up and 1x 1023 4.05
down phases for a single layer leads to the suggestion that ;1526 4.20
the buckled phase is an intermediate structure between one- 1% 10-32 4.59
layer hexagonal and two-layer square lattif@ls It is worth 55 1046 558

noting that the buckling transition is not restricted to colloi-
dal systems; it has also been observed in amphiphilic mem-
bra_nes[lO—lZ and n Langmuir monolayersl3]. The ex- f confined particles with soft repulsive and attractive inter-
perimental _obser_vat|ons are backe_d up by the results Ogctions[14]. The results obtained from the studies of the
con;_putgr S|m_ullat|on.sr:ud|$s of C?r."('ne.d hard .sphﬁéso; hard sphere system suggest that the buckling transition may
confined particles with soft repulsive interactiiist], an be entropy induced. This inference follows from the obser-
vation that, in an inhomogenuous system, the in-plane direc-
" tion is distinct from the out-of-plane direction, and there is a
competition between the in-plane and out-of-plane motions

2 004 | a Joo4 d .

g of the particles.

s In this paper we report the results of extensive molecular
£ o002 -

°

: 002 | 1 dynamics simulations of the buckling transition in multilayer
systems enclosed between parallel smooth planar walls. We
0.00 .00 | | find that, as for the case of the one-layer buckling transition,
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0.030
g ooaf b 0.04 e
e
E
2
£ ooz}
[
o 0.020 }
2
0.00 g
-1 05 0 $
£
g
T T T
e
0.010 |
Z 0.04 ¢ Jo.04 |
=
5
€
4
£ 002 Joo2 ¢
e
& ﬁ 0.00010 ; > 0.0 0 0.4 0.6 0.8 1.0
0.00 \ 0.00 =y , . : ‘ : : ‘ , . :
-1 -0.5 0 0.5 1 2o

Z
’ FIG. 3. Two-layer buckling. The longitudinal density profile for

FIG. 2. Longitudinal density distributions at constant lateral H=2.200 andp},=1.1000(volume fractior=0.523. The fraction
pressure [f; =45) and temperaturéa) H=1.90r, (b) H=2.000, near each peak is the number of particles that corresponds to this
(c) H=2.10o, (d) H=2.20s, (e) H=2.30r, and(f) H=2.40o. peak divided byNjayer-
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TABLE Il. The phase boundary of the two-layer ordered buck-
led phase for different values of the wall separatiire numbers

OO0
COO0

0.. shown are the lowest values p}, that support this phage
So, 00
Hio P3p
2.00 1.150
2.10 1.120
2.20 1.100
2.30 1.090

—nA, is the subject of current research and will be described
in a later publication. The preliminary results obtained from
simulations of a two-layer system suggest that this conver-
sion is potential dependent and can involve a rhombic phase
as an intermediate.

Il. MODEL SYSTEM AND COMPUTATIONAL DETAILS

The model systems that we have studied consist of 2—6
FIG. 4. Two-layer buckling: two rows are buckled against alayers of particles, each layer containing 2016 particles. The

single row. The lateral configuration of the upper layer in Fig. 3.particles are contained in a simulation box which is rectan-

The particles that correspond to peak are denoted by empty gular in the xy plane, with side lengths in the ratie:y

circles, and those that correspond to peékt® black circles. =7:(8v3/2). Periodic boundary conditions were imposed in

o ] o the x andy directions, but not in the direction. To confine

two-peaked longitudinal density distribution for each layer,i,e particles to a slab of specified thicknels,they were

and are coupled to an in-plane ordering transition. The relaéubjected to a one-body external potential in zhdirection

tive densities, the in-plane structure, and the behavior UPOfsee below:

increasing the wall separation of the longitudinal density dis- \ye find it convenient to use the reduced variabiés

tribution clearly imply that these buckled phases interpolate:rla, 2 =7la, T* =kgTle, p* =po?, andm=1, with o

the reconstructive transformationg\ —(n+1)[J. The tWo  he diameter of the particles the depth of the attractive

transitions, nA —n-buckled—(n+1)01, are found to be hntential well,p the number density, anah the mass of the

first order. . _ particle. The systems we have studied all have high density.
The other type of transition that occurs when crystalline

structures evolve between two and three dimensions, . . . i .
0 200.0 | 1
00008 D—OH=2.100
(o} 3! ¢—oH=2.200
038 0@ & 0O—OH=2.30¢
000638 e
0y 00 33 00 3
985858385
e 08 S Oeg 150.0 1
00 L8 oS0~ ®
0028 5 ® 0o
ol ¥%5 Fot4
09008 C8
*% "o
< 1000 .
3
bot4 50.0 1
00
oo
53%
o7 3ot
O0g
S0
0.0 A ; \ . . .
0.96 1.00 1.04 1.08 1.12 1.16 1.20

N, 07A

FIG. 5. Two-layer buckling. The lateral correlation of the two .
inner peaks in Fig. 3. The particles that correspond to peakr2 FIG. 6. The lateral pressure as a function of the one-layer two-
denoted by black circles, and those that correspond to pbakyl dimensional number density, indicating th& 2-two-layer-buckled
empty circles. transition wher2.10c<H<2.300.
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This pair potentialsee Fig. 1 was designed by Marcus and
Rice to have the features of colloidal particles that are steri-
cally stabilized by grafted polymer brushes to prevent aggre-
gation induced by van der Waals forces. The first term in Eq.
(2.1) represents the attraction between colloid particles when
] there is incipient overlap between the stabilizing brushes on
their surfaces; for simplicity we have taken the functional
form of this attraction to be an inverse even power exponent
with depthe =1.0kg T and widthww/o=ww* =0.006, cen-
. tered atwc* =1.05. The second term in E.1) is the core-
core repulsion, which is the dominant contributionuig *)
whenr*<1; the functional form chosen is very nearly a
hard core repulsion but has continuous derivatives. The last
0.0 e e v T Ty TS term in Eq.(2.1) is an interpolating soft repulsion, represent-
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 . . . . .
N__oHA ing the entropy cost associated with interpenetration of the
o stabilizing brushes attached to the surfaces of the colloid
particles; it plays the role of a spline function between the
FIG. 7. The lateral pressure as a function of the one-layer twogforementioned attractive and repu]sive terms.
dimen;ional number density, indicating the two-layer-bucki&dl The confinement of the particles in thez directions is
transition wherH =2.400. affected by the action of a one bodydependent external
field. Different forms can be chosen for this field, the sim-
Consequently, although the particles can move irettizec-  plest being that for hard parallel walls. Then the extra degree
tion, from one layer to another, on average the number off freedom that is introduced in the thermodynamic descrip-
particles in each layer is the same. Therefore, we choose #Pn of the system is the spacing between those two walls.
characterize the state of the system with the one-layer twg3€cause of their macroscopic size, colloidal spheres do not
dimensional2D) number density ;o= Nz e/A, WhereA is “feel” the atomic scale granularity of the walls, so the wgalls
the area of the simulation cell in they plane, andNjqye is can be regarded as smooth. The shape of the potential we
the average number of particles per layer. have chosen,
The majority of our calculations were carried out for par-
ticles subject to the same pair interaction as used in our pre-
vious work, namely,
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FIG. 11. Three-layer buckling: three rows are buckled against a
single row. The lateral configuration of the upper layer in Fig. 10.
The particles that correspond to peak are denoted by empty

pressures as a function of the height between the two confiningircles, and those that correspond to peaki® black circles.

walls at constanN, A andT (p3p=1.2000), indicating the three-
layer-buckled-4] transition.

is such as to confine the system to form a slab with well

specified heighH. In Eq. (2.2), z* is the distance from the

(2.3b

center of the cell to the center of mass of the particle and

{=128. The value ofD determines the distandé¢ between
the walls. Table | displays the values ®f and the corre-
sponding values offi.

The lateral and transverse pressupgsand p;, respec-

tively, were calculated from the lateral and transverse virials o]

W, and W, where

N N 2 2
W 12 Xij TYij au(r) (233
=5 — 1 -
23S0 1 ar |
r—rlj
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FIG. 10. Three-layer buckling. The longitudinal density profile
for H=2.90r and p3,=1.1600(the volume fraction is 0.628The
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FIG. 12. Three-layer buckling: two rows are buckled against
two rows. The lateral configuration of the middle layer in Fig. 10.

fraction near each peak is the number of particles that correspondghe particles that correspond to peak are denoted by empty

to this peak divided byN,aye-

circles, and those that correspond to peakl® black circles.
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FIG. 15. Four-layer buckling: four rows are buckled against a

FIG. 13. Three-layer buckling. The lateral correlation of the . | The lateral f. i f1h ter | i Ei
outer layer inner peak and the middle layer peak in Fig. 10. TheiTgTehrOW' " le atﬁr? con |gura(;otn 0 a;;pp(fr out edr ;yer mt '9-
particles that correspond to peak are denoted by empty circles, - 'he particles that correspond to pe € denoted by emply

and those that correspond to pedk I8y black circles circles, and those that correspond to peakb¥ black circles.

10°. Each density was equilibrated for at least 10° MD
p[:NkBTJrZ(WO’ (2.4b) steps, and then data collected fox420* MD steps, every
A 400 time steps.
The initial configuration for each of the simulations was
taken to be a perfect triangular lattice, with the positions of

Wh_?[]ev :|Ah ?ndgi =o+h. D) simulat od the layers symmetric with respect to the midpoint of the cell

€ molecular .ynamlc(sl\/l ) simulations were carrie (z*=0). In the initial configuration all the particles of each

out using the velocity Verlet algc_)rlthm and the Ve_rlet ne'gh'layer were assigned the same valuezdf The lattice points

$?]r I('js.t tmethoci f%r_ tﬂ?hcalcﬁlatfr; of the tpof:centlal Z;%rgy'of the layers were arranged out of registry with respect to
& distance at which the potential was cut off wasr] one another. For a number of layers equal to or greater than

the neighbor list cut off was 2.4 times the projected in—planethree we took theABA type structure of the hexagonal close
average spacing of the particles. The need for updating of the

neighbor list was checked at every time step. The average

time step used was, in reduced unitsg 50~ 4; the associ- .

ated rms fluctuation in total energy did not exceed one part in (XX oo, 0.0:0.0.0.8.0.0.6.6)
e X e
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FIG. 14. Four-layer buckling. The longitudinal density profile FIG. 16. Four-layer buckling: three rows are buckled against
for H=3.740 and p3,=1.1600(the volume fraction is 0.650The  two rows. The lateral configuration of the upper inner layer in Fig.
fraction near each peak is the number of particles that correspondst. The particles that correspond to peak&@e denoted by empty
to this peak divided byN,aye- circles, and those that correspond to peakhy black circles.



666 RONEN ZANGI AND STUART A. RICE PRE 61

P
<
8:3.8 o

o8

D

e
255
(]

QO e
oS B Se NS

&

FIG. 17. Four-layer buckling. The lateral correlation between FIG. 18. Four-layer buckling. The lateral correlation between

peaks b (empty circle$ and 3 (black circleg of Fig. 14. peaks 4 (empty circle$ and 3 (black circles of Fig. 14.
paCked lattice. All of the simulations results reported in thiStriangL"ar packing_ S|m||ar|y, an examination of the partic|e
paper refer to the reduced temperatiife=1.00. configuration displayed in Fig. 5, which represents the super-
posed lateral configurations in layerb &nd 2a, shows that
. RESULTS decreasing the distance between the rows along the perpen-

dicular between them creates the same situation where half
of the layer has square packing and half has triangular pack-
We have studied the behavior of two-layer colloidal sus-ing. With rearrangement of the triangular packing present in
pensions confined between walls with gaps in the rangeach layer to square packing the overall effect is then to form
1.800r<H=<2.40s. The behavior of the longitudinal density the 31 structure.
distribution as a function of wall separation is shown in Fig.  The stability region of the buckled phase increases with
2. The several cases shown describe a path that corresporigigreasingH, and ordered buckled phases were observed for
to equilibrium between a confined slab and bulk, i.e., a pat?. 00r<H<2.35. When 1.86<H<1.90r the buckled
along which there is equality of temperature and lateral presphase is not stable and the longitudinal density distribution is
sure between the two phases. Wher 1.9Qr the longitu-  unimodal for each of the layers. The buckled phase corre-
dinal density distributions of the layers adjacent to each walkponds to the high density region in the phase diagram. The
are unimodal. AdH increases the longitudinal density distri- lowest density at each value &f for which the two layer
bution of each layer becomes bimodal, and the peaks ajrdered buckled phase is stable is given in Table Il. When
smaller |z*| move continuously toward*=0. WhenH  H=2.4Qs the ordered two-layer buckled phase is unstable
=2.400 these peaks merge and the system consists of thregith respect to a three-layer slab with body centered cubic
ordered layers with square packing in each layer. An analysigbco structure.
of the amplitudes of the peaks in the longitudinal density An examination of the distribution of interparticle dis-
distributions(Fig. 3 shows that each layer is split infoand  tances for the model system with Marcus-Rice-type interac-
b components in such a way that two-third of the particlestions, for different wall separations and densities that support
are displaced towards the wallsg,2b), while one-third of  two-layer buckling, reveals that both the intralayer and inter-
the particles are shifted toward the centeb(Za). An ex-  layer particle separations c4i) be all on the soft repulsive
amination of the in-plane structure of one of the lay@fig.  part of the potential curveji) be all at the minimum of the
4) reveals that thea and b layers are associated with an attractive well, or(iii) exhibit coexistence of separations of
ordered phase in which two rows are displaced toward theypes(i) and (ii).
wall with respect to one row. The buckling transition appears to be universal in the
How does the structure of the two-layer buckled phasesense that it does not depend on the type of interparticle
mediate the 22— 30 conversion? The transformation of the potential used. Most of our simulations were executed with
layers corresponding to the outer peas and ) to  the Marcus-Rice potential, but a few simulations were car-
square layers is similar to the way the one layer buckledied out using a modified Marcus-Rice potential with the
phase mediates theAlto 201 transition. An examination of attractive well removed; this potential has only soft and hard
the particle configuration displayed in Fig. 4 shows that decore repulsions. A similar small set of simulations was car-
creasing the distance between the paired r@mesrespond- ried out using the hard sphere potential. All of these poten-
ing to peak h or peak D) along the perpendicular between tials support ordered buckling of the layers in the simulation
them creates a layer which has half square packing and hasmple.

A. Two-layer buckling transition
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Figure 6 displays the isotherms of the lateral pressure asBhe confinement range covered is 3:02H <3.30s. As be-
function of the one-layer two-dimensional number density.fore, the longitudinal density distribution for each of the
For H=2.30r a van der Waals loop is evident in the rangethree layers is bimodal. Note that &sincreases the inner
1.0500< p3,=<1.0900. The width of the van der Waals loop peaks(smaller|z*|) of the longitudinal density distributions
decreases ad decreases, and fét<2.100 the lateral pres- of the layers adjacent to the walls move to smaller values of
sure isotherm appears to be continuous on the scale of tHeg*|, while the outer peaks of those distributions move to-
sampling of the density that we have used in our calculaward larger values ofz*|. Simultaneously, the longitudinal
tions. However, the difference between the densities of thelensity distribution of the inner layer of the three-layer sys-
coexisting buckled and unbuckled phases decreases with d@&m splits into two distributions with equal amplitude, and
creasingH, and we cannot rule out the possibility that when each of these moves toward larger value§z’f asH in-

H is small this difference is smaller than the sampling inter-creases. Eventually, wheid=3.30s, the peaks merge to
val for the density. If so, what appears to be a continuougorm a 471 structure. WhenH=3.25 the results of our
transition wherH=<2.10r remains a weak first order transi- simulations show coexistence between a three-layer buckled
tion. Just this behavior was encountered in our study of th@hase and al4 phase. The longitudinal density distribution
buckling of a single layer wheH = 1.200, which value ofH  at this value oH shows that, in addition to the peaks of the
is close to the critical value below which the buckled phasébuckled layers, two additional peaks start to build up around
is unstable at all densities. |z*|=0.4, a location where at higher values lef(e.g.,H

The two-layer buckled phase tdBtransition is also first =3.30r) we found the two newly formed layers of éstruc-
order, as can be seen from the lateral pressure isotherm fture. The lateral and transverse pressures as a functieh of
H=2.40r (Fig. 7); this isotherm clearly displays a van der are shown in Fig. 9. Both isotherms have a van der Waals
Waals loop for 1.000€ p3,<1.0800. Examination of the
lateral configurations for systems with densities inside the
coexistence region confirms the separation of the two phases o040 } 2 0.839 0835 9 1
When p3,<1.0000 the system is in a two-layer-buckled b %
phase, but the displaced particles are not laterally ordered
For densitiesp,=1.0800 the system has dI3structure. 0.030 | 0674 0.666
Note that the smaller van der Waals loop in the density rangez 2 4
0.8600< p5,=<0.9200 corresponds to the melting transition.
The solid close to the melting point is in a triangular lattice.
The longitudinal density distribution of each of the layers of
this lattice has one peak, with a shoulder corresponding to ¢
strong overlap with the displaced peaks of the longitudinal o010
density distribution of the buckled phase.

0.020

0505 0.495

relative inten:

B. Three-layer buckling transitions 0.000 ot o Son” S (s G S G— -

We have studied the behavior of three-layer colloidal sus-
pensions confined between walls with gaps in the range FIG. 20. Five-layer buckling. The longitudinal density distribu-
2.820<H=<3.3%. The transformation of a three-layer tions forH=4.5% andp%,=1.1600(the volume fraction is 0.662
buckled phase system to a four-layer system with bcc strucfhe fraction near each peak is the number of particles that corre-
ture, along a path at constaft N, andT, is shown in Fig. 8.  sponds to this peak divided BYjayer-
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FIG. 21. Five-layer buckling: five rows are buckled against a FIG. 23. Five-layer buckling: three rows are buckled against
single row. The lateral configuration of layer 5 in Fig. 20. The three rows. The lateral configuration of layer 3 in Fig. 20. The
particles that correspond to peak are denoted by empty circles, particles that correspond to peak are denoted by empty circles,
and those that correspond to peatk By black circles. and those that correspond to peai By black circles.

loop, confirming that the transition occurs in both the lateraleach of the peaks in the longitudinal density distributions is
and normal directions and that the transition is first order. g ,cn that the combination of adjacent buckled layers to form
_ Figure 10 displays the amplitudes of the peaks in the long, - ynhyckled layers yields a#structure. This can be seen
gitudinal density distributions of the layers. The amphtudefrom the particle configuration in an outer lay@ig. 11 and
ratio of the outer layer distributions show that three-fourthsm an inner layer(Fig. 12. The former clearly shows the

of the particles (%,3b) are displaced towa_\rd the walls, and coherent displacement of three rows of particles with respect
one-fourth of the particles (d,3a) are displaced toward .
" o SRR to a single row, and the latter clearly shows two rows of
smaller|z*|. The longitudinal density distribution of the cen- : .
o ; o particles that are displaced toward lar¢ggY| and two rows
tral layer (2a,2b) splits into two equal amplitude distribu- . S
. : . . . that are displaced toward smallg*|. Examination of the
tions. The numbers of particles in the layers associated wit . , .
ateral correlation between the particles corresponding to
peaks » and 3 in Fig. 13, and the outer layer configuration
3b, reveals that two-third of the arrangement has a hexago-
nal configuration and one-third has a square configuration.
Then, the same type of rearrangements can be exploited in

0.876 0880 ¢
1a 6b

0.040 | 0.734

relative intensity

0.020 f

FIG. 22. Five-layer buckling: four rows are buckled againsttwo  FIG. 24. Six-layer buckling. The longitudinal density distribu-
rows. The lateral configuration of layer 4 in Fig. 20. The particlestion for H=5.58 and p3p=1.2000(the volume fraction is 0.676
that correspond to peakadare denoted by empty circles, and those The fraction near each peak is the number of particles that corre-
that correspond to peakbdby black circles. sponds to this peak divided BYayer-



PRE 61 NATURE OF THE TRANSITION FROM TWO- TO THREE. .. 669

all four layers to convert the three-layer buckled phase to a n 1 n—1 2
phase with &1 packing. ol | Rewrel K Beorryd | el RERPY
C. Four-layer buckling transitions X 2 n—1 ! n 4.1
. ur- UCKII I
Y 9 n+1/\n+1)'\n+1/\n+1)° “.3

~ The amplitudes of the peaks in the longitudinal densityn £¢.(4.1), the ratio terms are ordered such that the leftmost
distributions for the buckled phase of four layetsl  {eym corresponds to the layer that is closest to one of the
=3.740 andp3p=1.1600 are shown in Fig. 14. The buck- \alls and the rightmost term to the layer that is closest to the
Ilng transition in this system shows the same trend as that iﬁther wall. There ara ratio terms in Eq_(41), Correspond-
systems with smaller numbers of layers. Specifically, the dising to then layers, and these terms are symmetric with re-
tribution of particles in the outer layers splits such that four-spect to the midpoint of the set. This buckled phase mediates
fifths of the partiCIeS move toward the walls and One'fOUrththe structural ConversiomAH(n_}-l)D_ The transition
of the particles moves toward smalle |, while the num-  from ann-buckled phase to amé 1) phase occurs when
bers of particles in the two middle layers each split in theadjacent peaks of the longitudinal density distributions of
ratios ¢ and §. Then, by combining pairs of density distribu- gjfferent layers combine to forrm(+ 1) layers with the same
tions, specifically, b and 2a, 2b and 3, and 3 and 48,  in-plane density. For a process at constsrand A, the in-
we obtain five layers with the same number of particles. Thfplane density of a layer in then@-1)J phase is smaller by
lateral structure of the upper outer lay&ig. 15 shows that  factor of n/(n+1) than what it was in th@A phase. The
four rows of particles are buckled against a single row, anqateral structure of each layer displalys, rows of particles
the lateral structure of the upper middle lay€ig. 16 shows  that are displaced toward largéz*| and l;;=n+1— 1y
that three rows of particles are buckled with respect to tWqqs of particles which are displaced toward smaltf],
rows. The lateral correlations between the particles, correyhere,,, andl,, are the values of the numerators of the
sponding to peakst2and .3a, and d and 4a, are shownin  [atios given in Eq(4.1).
Figs. 17 and 18, respectively. S Obviously the regularity of the structure of the sequence

The behavior of the longitudinal density distribution of displayed in Eq(4.1) cannot persist fon indefinitely large.

the buckled phase along a path at consfnN, andT, for  Ag the number of layers increases the rangéddh which
four different values of in the range 3.76<H<4.20r, is  the puckled phase is stable decreases, and that range eventu-
shown in Fig. 19. FoH=4.20r we find that there is coex- gajly becomes equal to or less than the amplitude of out-of-
istence between a four-layer buckled phase anflgbase. plane thermal motion. Then the buckled phase becomes un-
stable with respect to a phase consisting of parallel planes of
particles. This crossover resembles the situation that pertains
for a one-layer system. In that case, when the spacing be-

The amplitudes of the peaks in the longitudinal densitytween the walls that confine it become smaller than some

distributions for the buckled phase of five layefsl critical value, buckling of the one-layer system becomes un-
- table.

=4.5% and p5,=1.1600 are shown in Fig. 20. The par- s .

ticles in the layers that are labeled 1 and 5 split in ratios of In the JAHZD. conversion throggh the one-!ayer buckled

5 (1a,50) and? (1b,5a), those that are labeled 2 and 4 split phase, a simple in-plane perpendicular reduction of the sepa-

in ratios of? (2a,4b) and2 (2b,4a), and those in the middle ration of the buckled rows is sufficient to convert the trian-
6 ’ 6 ’ ’ . . .
layer (labeled 3 split in ratios of2 and 2. The lateral struc- gular packing of the particles to a square packing. For

ture of layer 5 (%,5b) is shown in Fig. 21, that of layer 4 2A—3[] conversion via the two-layer buckled phase, the

(4a,4b) is shown in Fig. 22, and that of layer 343b) is in-plane perpendicular reduction of the separation of the

Shown in Fia. 23. The correlations of the particles that cor-bUCkled rows converts half of the configuration to a triangu-
9. £9. P .~ lar array and half to a square array, so another rearrangement
respond to the split peaks to be merged show behavior sim

lar to that observed for the smaller numbers of layers between ha.lf. of the rows must t_ake place to complete the
The longitudinal density profile for six layer bucklir;g is phase transition. For.the converS|o,11.3a4D,. thg same pro-
N . cess leads to two-thirds of the configuration in a triangular
shown in Fig. 24 forH=5.58 andpzp= 1.'2.000'.“238 layers array. Indeed, as the number of layers increases more rear-
that are close to the walls, 1 and 6, split in ratioSS @ind} .

L 2 and lit | ! 42 and | 3 and 4 rangements are required to complete the phase transition. It
ayers - an 543p It ;n ratios of and 7, and 1ayers s and 4 g possible that the character of this rearrangement is poten-
split in ratios of$ and=. As before, merging adjacent density tial dependent, as we found for thé\2-207 transition, and

fjistribqtionﬁ_frr(])m dirff?erent Layerrs] yields a pha;e W]ith Se_vfnthat the phase transition can be either first order or continu-
ayers in which each layer has the same number of partic €Jus with intermediate states that are associated with the

buckled phases.

D. Five- and six-layer buckling transitions
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